
14 CrossTalk—May/June 2012

RAPID AND AGILE STABILITY

Architecting
for Sustainable
Software Delivery
Ronald J. Koontz, Boeing
Robert L. Nord, SEI

Abstract. With increasing emphasis on avionics system rapid development and
reduced cycle times, software architecting practices can be applied with agility to
enhance evolving stakeholder concerns while sustaining long-term business goals.

The Networked Common Operating Real-Time Environment
(NCORE) software architecture for the Apache Longbow helicop-
ter Mission Processor provides a case study to illustrate the archi-
tecting practices that support agility and sustainment of long-term
business goals. The NCORE architecture was initially developed
and flight-tested during the jointly funded Army Aviation Technol-
ogy Directorate (AATD) and Boeing Manned/Unmanned Com-
mon Architecture Program, Phase II (MCAP II). The MCAP II risk
reduction program initially focused on the evaluation of emerging
software technologies such as real-time Java.

Since then, the NCORE architecture continues to evolve on
the Apache Longbow Block III Program. The driving architectural
requirements include safety, performance, availability/reliability,
modifiability, and interoperability. As initial platform capabili-
ties are realized and as avionics computing lifecycles shorten,
increased emphasis is placed on extensibility and the desire to
host applications developed by third parties. In parallel, embedded
infrastructure software must be architected to reduce overall time
and cost to incorporate hardware upgrades (proactive obsoles-
cence management) and to enable the hosting of new or existing
application-level software.

In the section that follows, each practice is described and
illustrated with an NCORE architecture example. Next, incremen-
tal delivery of new capabilities is described in terms of how it is
realized by combining all of the practices. Finally, the essential
characteristics of the practices are summarized according to agile
development and architecture criteria. This summary provides a
checklist to aid learning for others developing software-reliant
systems, and provides feedback on whether their application is on
track to help meet project goals.

Architecture Practices That Balance Flexibility
and Stability

Architecture best practices are a set of actions, methods, tech-
niques, and/or strategies applied to software architecting and the
software lifecycle that are well proven and known to yield desired
outcomes without introducing unnecessary program risk. Those
architecting practices that are leveraged by the NCORE architec-
ture and that can be broadly applied to avionics platforms are now
described and analyzed from the point of view of agility.

Incremental/Iterative Development
NCORE architecture and application software artifacts are de-

veloped using an incremental and iterative development lifecycle
[3], notionally shown on a fiscal year calendar in Figure 1. Based
on periodic customer statements of work, incremental capabilities
are planned, developed, tested, and fielded. For each statement of
work iteration, integrated build and release plans are developed.
To enhance testability and integrability, software builds contain
two or more mini-builds that accelerate design, development,
automated testing, and platform integration.

This incremental/iterative development approach parallels
agile software development, with cross-functional/agile teams of
requirements/integrators, coders, and testers working according to
agreed-upon release planning (the build plan). Incremental/iterative

Software intensive systems, and in particular military avionics
platforms, are facing both shrinking defense budgets and the
continued expectation for more advanced mission capabilities.
The business case is that it is much more affordable to extend ex-
isting platform capabilities than to consider new platform designs.
Over a product lifecycle, business goals and objectives continue
to evolve as capabilities are realized. Paramount to enhancing
current platform capabilities is an extensible and sound avionics
system and mission-computing software architecture.

This article describes the role that five architecture practices
are continuing to play in enabling the Apache Block III program
to achieve long-term business goals. Agility is applied accord-
ing to Jim Highsmith’s definition, which describes it in terms of
balancing flexibility and stability [1]. Such agility enables architec-
tural development to follow a “just-in-time” model that comple-
ments iterative and incremental enhancement development and
integration [2]. Delivery of capabilities is not delayed pending the
completion of exhaustive requirements and design activities and
reviews. At the same time, architectural agility maintains a steady
and consistent focus on continual architectural evolution in sup-
port of emerging capabilities.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Architecting for Sustainable Software Delivery

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Software Engineering Institute,4500 Fifth
Avenue,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
With increasing emphasis on avionics system rapid development and reduced cycle times, software
architecting practices can be applied with agility to enhance evolving stakeholder concerns while sustaining
long-term business goals.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

CrossTalk—May/June 2012 15

RAPID AND AGILE STABILITY

Eng

Build 1

FY1 FY2 FY3 FY4
1Q 2Q 3Q 4Q 1Q 2Q 3Q 4Q 1Q 2Q 3Q 4Q 1Q 2Q 3Q 4Q

Eng

Build 2

Eng

Build 3

FT Build 1

FT Build 2

FT Build 3

More minor builds in early
engineering software builds

Few minor builds in later
flight test (FT) builds as

product matures

development further enables user feedback and
refinement, fixes, and overall product enhance-
ments to be folded back into product deliverables
as the software matures.

Iterative loops within each build cycle map
to mini-builds, and the quantity of mini-builds
is adjusted to accommodate the functional
complexity of the build. For example, a typical
six-month build cycle may be decomposed into
two or more mini-builds where multiple parallel
teams execute independent work threads. Each
team defines incremental build content that can
most effectively produce overall build content
objectives at the time of final build release.
Incremental build content definition minimally
considers work thread complexity and resource
availability relative to overall build objectives.

Informed Technology-Insertion
Decision Making

Informed technology-insertion decision mak-
ing is built upon communication and knowl-
edge sharing and is characterized as a cyclic
and iterative process of understanding stake-
holders’ concerns, making and documenting
decisions, and evaluating the consequences.
This communication provides near real-time,
two-way dialog between architects and stake-
holders. Both push and pull communication
strategies are concurrently employed:

Push: architecture and software design
documentation. Information about the architec-
ture is periodically provided to stakeholders.

Pull: architecture evaluations. Periodic
architecture evaluations collaboratively pull
information from the business management,
architecture team, and stakeholder community.

Together, these activities contribute to
enhanced knowledge sharing across the
integrated team.

The NCORE architecture description is cen-
tered on module, Component-and-Connector
(C&C), and allocation views [3]. Several styles
employ separation of concerns to capture
architecturally significant artifacts. To maximize
resources and avoid duplication, overlap-
ping stakeholder concerns are combined by
the architects into a concise set of architec-
tural views. As the architecture evolves, the
architects carefully analyze current concerns
and anticipate future stakeholder needs to
determine whether new views are required or
whether existing views can be enhanced.

Table 1 shows the stakeholder-to-docu-
mentation-artifact-type matrix developed by

Figure 1: Notional NCORE Incremental/Iterative Development Lifecycle

the architecture team when initially developing
NCORE architectural views. According to the
Table 1 key, an individual stakeholder level of
concern is identified as either “detailed,” “some
details,” “overview,” or “anything.” The “anything”
concern level signifies access to all readily avail-
able artifacts which can be browsed by any new
stakeholder seeking rapid and broad architecture

understanding. Software architects and develop-
ment team members seek “detailed” Module
and C&C view content, which convey static and
runtime concerns, respectively. Overall, decompo-
sition and layered module views are most popular
across the stakeholder community based on the
multi-faceted and layered NCORE architecture
and the overlapping concerns they address.

	

	
	

Table 1: NCORE Stakeholders and Architecture Information That They Find Useful

16 CrossTalk—May/June 2012

RAPID AND AGILE STABILITY

tects and business managers, and these risks became the focus
of follow-on mitigation and improvement activities. This continual
cycle influences and sustains evolution of the architecture and
business drivers in a predictable manner. In addition to identifying
risks, other important benefits to performing evaluations include
clarification of stakeholder concerns about quality attributes and
enhanced communication among the stakeholders [6].

Reports from the field validate and affirm the value of conduct-
ing periodic peer reviews during the design phase of the software
development lifecycle [7, 8]. Apache quarterly software design re-
views led by software architects and subject matter experts further
enhance customer communications and stakeholder engagement.
Customer comments from these reviews are iteratively incorpo-
rated in the design artifacts to continually improve product quality.

Strategies and Patterns for Sustained Evolution
Strategies for architectural governance and patterns for open

systems and extensibility sustain long-term product evolution. Ar-
chitecture evolution is enhanced through process-driven oversight
centered on balancing flexibility and stability.

An Architecture Review Board (ARB) is tasked with governing
the architecture to ensure that it evolves in a disciplined way. The
ARB acts as an internal design review team of culturally diverse
architects (differing viewpoints) and subject matter experts (spe-
cific domain knowledge) who are chartered to ensure minimally

Frequent architecture information exchange among stakehold-
ers fosters creativity and identifies continual opportunities for
further exploitation of NCORE architecture capabilities at accept-
able program risk levels.

Frequent Architecture Analysis and Improvement
Customer collaboration over contract negotiation is a well-

known agile development practice. Agile design involves alternative
analysis and trade-offs among evolving stakeholder concerns and
among the significant design decisions made to address them. Pe-
riodic architecture evaluations enable and compliment continuous
stakeholder education. Stakeholder knowledge sharing enables
product improvement through exploitation of diverse viewpoints.
Investing in frequent improvement, recognized as an “inspect and
adapt” best practice, is about enhancing product capability based
on direct stakeholder input and stated business goals.

A team of experts, composed of members of the Carnegie Mel-
lon University SEI and the U.S. Army, evaluated the Apache Block
III NCORE software architecture by applying the Architecture
Tradeoff Analysis Method® (ATAM®) [4]. The evaluation team
pulled information from the business management, architecture
team, and stakeholders in a goal-directed fashion. The evalua-
tion team analyzed the architecture with respect to the business
drivers and stakeholders’ concerns about quality attributes [5].
Discovered risks served as feedback and guidance to the archi-

Figure 2: NCORE Software Unit Identification View

CrossTalk—May/June 2012 17

RAPID AND AGILE STABILITY

complex, consistent, and informed designs—all aimed at minimizing
implementation time and cost and reducing the amount of rework.

The NCORE architecture is documented as a series of views
[3] as required by evolving stakeholder needs. The software unit
identification view is shown in Figure 2, and additional architecture
documentation can be found in the work of Koontz [9, 10, 11].

Designing for extensibility promotes continued evolution and
uses design patterns such as real-time technical metric report-
ing, publish-subscribe, client-server, and layering. Designing as an
open system through nonproprietary application programming in-
terfaces enables third-party software integration and the ability to
move applications between CPUs during integration (to achieve
load balancing, for example).

Prototyping and the Research & Development
(R&D) Test Platform

The Apache Block III program continues to benefit from using
and leveraging multiple prototyping activities. The MCAP II pro-
gram, jointly funded by the AATD and Boeing, serves as an R&D
flight test platform for evaluating emerging technologies targeted
for production Apache. Targeted early prototyping significantly
reduces program risk through technology culling and selective
maturation. Examples of network-centric experimentation now
transitioning into Apache Block III include tactical communica-
tion data links for H.264 video streaming, soldier radio wave-
form, wideband networking waveform, Link-16, and manned/
unmanned teaming. Agility in the form of cross-functional teams
and R&D-focused culture is paramount to the success of proof-
of-concept technology demonstrations that further enable rapid
system integration with acceptable program risk [12].

After emerging technologies are initially demonstrated and
selected for product integration (new technology insertions), they
are typically rapidly prototyped within the production environment.
Prototyping at this later point in the lifecycle enables parallel
requirements definition and software development, a recognized
and proven agile practice. Agile application shortens overall
integration lifecycles by merging requirements definition with
software development, test, and integration process steps.

Applying Architecture Practices to Support
Sustainable Delivery

Now that the five practices have been individually explained,
they are applied in combination to demonstrate how they support
the evolving system and delivery of new capabilities.

Evolving stakeholder needs and business goals identified
through architecture evaluation lead to new requirements for
selected capabilities. Initially, NCORE started with a primary focus
on open-systems architecture, performance, and reliability and
is now moving toward flight safety and extensibility (realizing the
planned technology refresh must satisfy very long-term program
objectives). These new requirements trigger the infrastructure and
application-insertion timelines in response.

For example, during an ATAM evaluation, an exploratory scenario
identified height-above-ellipsoid as a common platform technique
for improving weapons-delivery accuracy that could be easily
implemented. This kind of change is supported and sustained by

the architecture practices working interactively and in unison in
accordance with Table 2. Alternatively, first-time Joint Tactical Radio
(JTR) Link-16 integration is viewed as a much more complex inser-
tion; however, application of the practices is equally relevant.

The incremental/iterative development shown in Figure 1, now
being deployed for JTR Link-16 integration, allows for focused
and time-phased requirements/architecture analysis, code, test,
and integration activities for complex and less defined function
deployment based on stakeholder priorities and choices. Time-
phased incremental/iterative development enhances testability
due to incremental design verification and just-in-time architec-
tural decision making that must be coordinated and scheduled.

Informed technology-insertion decision making applies to
both JTR Link-16 and height-above-ellipsoid. It enables com-
munication and understanding among multiple stakeholders
regarding a specific concern and its business priority. From
Table 1, the statement of work and performance specifica-
tions represent formal and binding contractual agreements that
convey customer requirements to the architects and program
management. These documents are pivotal for Apache because
they represent coupling between prior architecture evaluation
and contractual requirements.

Frequent architecture analysis and improvement is centered
on brainstorming exploratory scenarios using agreed-upon
architecture artifacts. The architectural views, shown in Table 1,
provide evidence that quality attributes are being satisfied during
consideration of height-above-ellipsoid specific concerns relative
to business goals and priorities.

Strategies and patterns for sustained evolution are employed
and enforced by the ARB to ensure architectural integrity across
the lifecycle. Patterns for open systems and extensibility provide
support for making and localizing architecture change. Insertion
agility is the result of identifying required architecture changes
and employing an agile just-in-time methodology (e.g., adding
secure socket library in support of Link-16 integration).

The NCORE architecture was first-flight proven in 2004, using
the MCAP II Prototyping and R&D Test Platform. Initial NCORE
demonstration validated the architecture capability to rapidly
integrate new technologies and is the keystone open systems
architecture enabler for the Apache Block III program. Addition-
ally, network-centric experimentation has led to the customer’s
decision to choose Apache Block III as the first JTR Link-16
integration platform.

Based upon discussions with the stakeholders, height-above-
ellipsoid is being provided in a future enhancement statement of
work and will soon be implemented and deployed. JTR Link-16
software development and integration continues to mature and
evolve with the delivery of incremental capabilities.

Agile Development and Software
Architecture Enablers

Table 2 characterizes the five architecture practices using
established criteria from agile software development and soft-
ware architecture fundamentals, including response to change,
customer collaboration, quality attributes, and architecture, so
they can be applied to benefit the development of other software-

18 CrossTalk—May/June 2012

RAPID AND AGILE STABILITY

reliant systems across different domains. These criteria provide
a quick look into the application of the practices and associated
risks to enabling the ability to sustain software development and
delivery at the expected velocity (pace) for large-scale, complex,
multiyear projects [13].

Key Takeaways
•	For	software-intensive,	multiyear	projects,	agile	develop-

ment, which is focused on rapid, short-term deliverables, must be
complemented by sustainable architecture practices that ensure
the incremental delivery of capabilities over the extended lifecycle
of the product.

•	Software	architecture	best	practices	support	sustainable	
software delivery by leveraging established criteria from agile
software development and by applying software architecture
fundamentals that include response to change, customer col-
laboration, quality attribute trade-offs and analysis, and architec-
ture governance. These practices are interrelated and interact to
provide sustainable delivery of quality products.

•	Architecting	with	agility	can	be	applied	across	the	lifecycle	to	
continuously develop, deliver, and enhance software-reliant systems.

Disclaimer:
Copyright 2012 by Carnegie Mellon University (and co-owner).

No Warranty:
This Carnegie Mellon University and Software Engineering
Institute material is furnished on an “as-is” basis. Carnegie
Mellon University makes no warranties of any kind, either
expressed or implied, as to any matter including, but not limited
to, warranty of fitness for purpose or merchantability, exclusivity,
or results obtained from use of the material. Carnegie Mellon
University does not make any warranty of any kind with respect
to freedom from patent, trademark, or copyright infringement.
This work was created in the performance of Federal Govern-
ment Contract Number FA8721-05-C-0003 with Carnegie
Mellon University for the operation of the Software Engineer-
ing Institute, a federally funded research and development
center. The Government of the United States has a royalty-free
government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or
permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

 Response to Change Customer Collaboration Quality Attributes Architecture

Incremental /
Iterative

Development

Necessary processes
are identified to

respond to change

Functional requirements
are communicated with

focused criteria and
business priority

Quality attribute
requirements are

defined and tied to
business goals

Timeline of critical
architectural decisions
is clear and scheduled

Informed
Technology-

Insertion
Decision Making

Dynamic environment
and changing

requirements are
understood

Effective customer
communication

channels manage
expectations

The importance of
quality attribute
requirements is

understood

Architectural issues
(e.g., technical debt)

are tracked and
managed

Frequent
Architecture
Analysis and
Improvement

Waste is identified and
trade-offs are managed

(e.g., technical debt
and defects)

Artifacts to keep
multiple stakeholders
informed are agreed
upon and produced

effectively

Quality attribute
requirement analysis is
in place and used to

predict system
properties

Evidence is provided
that the architecture

satisfies quality attribute
requirements

Strategies and
Patterns for
Sustained
Evolution

Impact of uncertainty
on the project is
acknowledged

Technology insertions
are driven and targeted

by the user

Quality attribute design
is aligned to lifecycle

maintenance

Just-in-time
architecting enables
technology-insertion

agility

Prototyping and
R&D Test
Platform

High-potential
technologies are

identified to respond to
change

Pipeline of emerging
technologies and

technology insertions
are mapped to evolving

business goals

Measurement
environment is in place

to monitor the
implemented system

quality and done criteria

Obsolescence risk
management occurs via
prototyping of newest
avionics technologies
(multicore processors)

Table 2: Mapping of Practices to Agile and Architecture Criteria

CrossTalk—May/June 2012 19

RAPID AND AGILE STABILITY

ABOUT THE AUTHORS
Ronald J. Koontz is a Boeing Company
Technical Fellow with more than 20 years
of expertise in real-time embedded sys-
tems. He is an SEI-certified ATAM evalua-
tor and holds a Boeing Software Architect
Certificate. He has served as a software
architect on U.S. Army Apache Attack He-
licopter Mission Processor projects since
2003. Prior to Apache programs, he led
the design, implementation, and field test-
ing of multiple software-intensive projects
for The Boeing Company, Phantom Works.

Phone: 480-891-2065
E-mail: ron.j.koontz@boeing.com

Robert L. Nord is a senior member of
the technical staff at the SEI and works
to develop and communicate effective
methods and practices for software archi-
tecture. He is coauthor of the practitio-
ner-oriented books Applied Software
Architecture and Documenting Software
Architectures: Views and Beyond, pub-
lished by Addison-Wesley, and lectures
on architecture-centric approaches.

Software Engineering Institute
4500 Fifth Avenue
Pittsburgh, PA
Phone: 412-268-1705
Fax: 412-268-5758
E-mail: rn@sei.cmu.edu

REFERENCES

1. Highsmith, J. A. Agile Project Management: Creating Innovative Products. 2nd ed.
 Boston: Addison-Wesley Professional, 2009.
2. Brown, N., R. Nord, and I. Ozkaya. “Enabling Agility Through Architecture.” CrossTalk 23.6 (November/December 2010): 12-17.
3. Larman, C. and V. R. Basili. “Iterative and Incremental Development: A Brief History.” IEEE Computer, 36(6), 2003: 47-56.
4. Clements, P., F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, and J. Stafford.
 Documenting Software Architectures: Views and Beyond. Boston: Addison-Wesley, 2003.
5. Clements, P., R. Kazman, and M. Klein. Evaluating Software Architectures: Methods and Case Studies.
 Boston: Ad dison-Wesley, 2002.
6. Ozkaya, I., L. Bass, R. Sangwan, and R. Nord. “Making Practical Use of Quality Attribute Information.”
 Spec. issue of IEEE Software 25.2 (March/April 2008): 25-33.
7. Nord, R. L., J. Bergey, S. Blanchette Jr., and M. Klein. Impact of Army Architecture Evaluations
 (CMU/SEI-2009-SR-007). Software Engineering Institute, Carnegie Mellon University, 2009.
 <http://www.sei.cmu.edu/library/abstracts/reports/09sr007.cfm>
8. Edmondson, J. S., E. Lee, and C. G. Kille. “A Light-Weight Architecture Trade Off Process Based on ATAM.” SEI
 Architecture Technology User Network (SATURN) Conference. Sheraton Station Square, Pittsburgh. 14-16 May 2007.
 <http://www.sei.cmu.edu/library/abstracts/presentations/ATO-Lite-for-SATURN-2007-2.cfm>
9. Forstrom, H. “Inexpensive ATAM-Peer Review Detects and Fixes Architecture Problems Early.” SEI Architecture
 Technology User Network (SATURN) Conference. Radisson Green Tree, Pittsburgh. 30 April-1 May 2008.
 <http://www.sei.cmu.edu/library/abstracts/presentations/ATAM-peer-review-SATURN-2008.cfm>
10. Koontz, R. “Mission Processor Software Open Systems Architecture for the Apache Helicopter.” Proceedings of the
 63rd American Helicopter Society International Annual Forum. Alexandria, VA: American Helicopter Society,
 2007. 2253-2261.
11. Koontz, R. “Apache Mission Processor Software Architecture: Architectural Approaches.” Proceedings of the 64th
 American Helicopter Society International Annual Forum. Alexandria, VA: American Helicopter Society, 2008. 1507-1514.
12. Gannon, S.P. and R.E. Speir. “US Army Aviation Network Technologies Demonstrated at JEFX’08.” Proceedings of
 the 65th American Helicopter Society International Annual Forum. Alexandria, VA: American Helicopter Society, 2009.
 812-823.
13. Koontz, R. “Apache Mission Processor Software Architecture: Architectural Decisions.” Proceedings of the 65th
 American Helicopter Society International Annual Forum. Alexandria, VA: American Helicopter Society, 2009. 766-774.

The Software Maintenance Group at Hill Air Force Base is recruiting civilian positions
(U.S. Citizenship Required). Benefits include paid vacation, health care plans, matching retirement fund,

tuition assistance and time off for fitness activities. Become part of the best and brightest!
Hill Air Force Base is located close to the Wasatch and Uinta
mountains with many recreational opportunities available.

Send resumes to:
phil.coumans@hill.af.mil

or call (801) 586-5325
Visit us at:

http://www.309SMXG.hill.af.mil

Electrical Engineers and Computer Scientists
Be on the Cutting Edge of Software Development

